The Electrochemical Detection of Alizarin Red at Electrofabricated CeO2-Reduced Graphene Oxide Nanostructures

Authors

  • Neslihan Çelebi Atatürk University
  • Emir Coşkun Atatürk University

Keywords:

Alizarin Red, Cerium Oxide, Electrochemical Deposition, Reduced Graphene Oxide

Abstract

Cerium oxide-reduced graphene oxide (CeO2-rGO) nanostructures were successfully fabricated on indium tin oxide (ITO) electrode surface using one-pot electrochemical technique. The prepared nanostructures and modified surfaces (CeO2-rGO/ITO) were investigated for the electrochemical determination of Alizarin red. Firstly, electrocatalytic activities of different modified surfaces were compared by cyclic voltammograms (CVs). For further analysis, concentration-dependent measurements were recorded using differential pulse voltammetry (DPV). The detection limit of Alizarin on the CeO2-rGO/ITO electrode was calculated as 1.9 µM. The modified surface was successfully used to detect Alizarin red, which may add a new dimension to the detection of Alizarin derivatives materials.

References

Musie W, Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review’. Heliyon (2023) 9(8):18685. doi:10.1016/j.heliyon.2023.e18685.

Cavin L. 1 - Freshwater Environments and Fishes’, in Freshwater Fishes: 250 Million Years of Evolutionary History: Elsevier (2017). 1–14.

Ahmed T, Zounemat-Kermani M, Scholz M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan’. Int J Environ Res Public Health (2020) 17(22):8518. doi:10.3390/ijerph17228518.

Wang J, Azam W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries’. Geoscience Frontiers (2024) 15(2):101757. doi:10.1016/j.gsf.2023.101757.

Karimi-Maleh H. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection’. Food and Chemical Toxicology (2022) 164:112961. doi:10.1016/j.fct.2022.112961.

Singh S, Patidar R, Srivastava VC, Lo S-L, Nidheesh PV. A critical review on the degradation mechanism of textile effluent during electrocatalytic oxidation: Removal optimization and degradation pathways’. Journal of Environmental Chemical Engineering (2023) 11(6):111277. doi:10.1016/j.jece.2023.111277.

Venkatesh S, Arutchelvan V. Biosorption of Alizarin Red dye onto immobilized biomass of Canna indica: isotherm, kinetics, and thermodynamic studies’. Desalination and Water Treatment (2020) 196:409–421. doi:10.5004/dwt.2020.25798.

Bessegato GG, Brugnera MF, Zanoni M. Electroanalytical sensing of dyes and colorants’. Current Opinion in Electrochemistry (2019) 16:134–142. doi:10.1016/j.coelec.2019.05.008.

Ali H. Biodegradation of Synthetic Dyes—A Review’. Water Air Soil Pollut (2010) 213(1):251–273. doi:10.1007/s11270-010-0382-4.

Singh S, Srivastava VC, Mall ID. Mechanism of Dye Degradation during Electrochemical Treatment’. J. Phys. Chem. C (2013) 117(29):15229–15240. doi:10.1021/jp405289f.

Moreira FC, Boaventura R, Brillas E, Vilar V. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters’. Applied Catalysis B: Environmental (2017) 202:217–261. doi:10.1016/j.apcatb.2016.08.037.

Panizza M, Oturan MA. Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode’. Electrochimica Acta (2011) 56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105.

Zhang J, Chi Y, Feng L. The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa’. BMC Biotechnol (2021) 21:64. doi:10.1186/s12896-021-00720-8.

Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing’. Materials Today Bio (2023) 23:100823. doi:10.1016/j.mtbio.2023.100823.

Ahmed HE. Green Synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities’. Molecules (2021) 26(15, Art. no. 15). doi:10.3390/molecules26154659.

Durmuş S, Dalmaz A, Özdinçer M, Sivrikaya S. Preparation of Cerium Oxide Nanoparticles: An Efficient Catalyst to the Synthesis of Dimeric Disulphide Schiff Bases’. CBUJOS (2017) 13(1, Art. no. 1). doi:10.18466/cbayarfbe.282116.

Li T, Liu H. A simple synthesis method of nanocrystals CeO2 modified rGO composites as electrode materials for supercapacitors with long time cycling stability’. Powder Technology (2018) 327:275–281. doi:10.1016/j.powtec.2017.12.073.

Ahmed J, Faisal M, Algethami JS, Alsaiari M, Jalalah M, Harraz FA. CeO2·ZnO@biomass-derived carbon nanocomposite-based electrochemical sensor for efficient detection of ascorbic acid’. Analytical Biochemistry (2024) 692:115574. doi:10.1016/j.ab.2024.115574.

Ahmed J, Faisal M, Algethami JS, Alkorbi AS, Harraz FA. Facile synthesis of CeO2·CuO-decorated biomass-derived carbon nanocomposite for sensitive detection of catechol by electrochemical technique’. Materials Science in Semiconductor Processing (2024) 172:108098. doi:10.1016/j.mssp.2023.108098.

Wang W, Xu W, Zhao Z, Cheng M, Xun M, Liu H. Method and Application of Surface Modification of Cerium Dioxide’. Advanced Engineering Materials (2024) 26(14):2400092. doi:10.1002/adem.202400092.

Çelebi N, Temur E, Doğan H, Yüksel A. The electrochemical fabrication of Cu@CeO2-rGO electrode for high-performance electrochemical nitrite sensor’. Diamond and Related Materials (2024) 143:110907. doi:10.1016/j.diamond.2024.110907.

Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N. Alizarin Red S as an electrochemical indicator for saccharide recognition’. Electrochimica Acta (2011) 56(19):6607–6611. doi:10.1016/j.electacta.2011.04.081.

Monnappa A, Manjunatha JG, Bhatt AS, Chenthattil R, Ananda P. Electrochemical Sensor for the Determination of Alizarin Red-S at Non-ionic Surfactant Modified Carbon Nanotube Paste Electrode’. Physical Chemistry Research (2019) 7(3):523–533. doi:10.22036/pcr.2019.185875.1636.

Deffo G, Temgoua R, Mbokou S, Njanja E, Tonlé I, Ngameni E. A sensitive voltammetric analysis and detection of Alizarin Red S onto a glassy carbon electrode modified by an organosmectite’. Sensors International (2021) 2:100126. doi:10.1016/j.sintl.2021.100126.

Liu F, Kan X. Dual-analyte electrochemical sensor for fructose and alizarin red S specifically sensitive detection based on indicator displacement assay’. Electrochimica Acta (2019) 319:286–292. doi:10.1016/j.electacta.2019.07.001.

Moulya KP, Manjunatha JG, Osman SM, Ataollahi N. A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode’. Journal of Environmental Science and Health, Part A (2024) 59(3):103–112. doi:10.1080/10934529.2024.2339160.

Downloads

Published

2025-07-15

How to Cite

The Electrochemical Detection of Alizarin Red at Electrofabricated CeO2-Reduced Graphene Oxide Nanostructures. (2025). International Journal of Innovative Research and Reviews, 9(1), 28-31. https://www.injirr.com/article/view/239