Growth of Transparent Conductive Oxide SnO2 Thin Film as H2 Sensor
Hilal Kübra Sağlam
Department of Electricity and Energy, Vocational College of Technical Sciences, Ataturk University
https://orcid.org/0000-0001-6712-5826
Mehmet Masat
Department of Aviation Management, Social Science Vocational College , Atatürk University
Mehmet Ertuğrul
3Department of Electrical and Electronic Engineering, Faculty of Engineering, Ataturk University
https://orcid.org/0000-0003-1921-7704
PDF

Keywords

Gas Sensor
SnO2 thin films
Ultrasonic Spray Pyrolysis
Transparent Conductive Oxide

How to Cite

Sağlam, H., Masat, M., & Ertuğrul, M. (2021). Growth of Transparent Conductive Oxide SnO2 Thin Film as H2 Sensor. International Journal of Innovative Research and Reviews, 5(2), 69-73. Retrieved from http://www.injirr.com/article/view/83

Abstract

 Tin dioxide (SnO2) thin films are an advantageous group of metal oxides due to their high electrical conductivity. This transparent conductive oxide has an important place for electronic applications. The USP method, which is one of the thin film preparation techniques, is preferred in gas sensor systems due to its simple use and cheapness. The aim of this study is to examine the morphological and structural properties of tin oxide thin films using ultrasonic spray pyrolysis (USP) technique. The precursor SnCl2 used in the process is 0.1M and 100 mL with deionized water. This solution prepared with deionized water and 0.1M /100mL SnCl2 was sprayed onto the glass substrate for film coating. Significant peaks can be obtained in XRD plots due to evaporation when grown films are annealed at a temperature higher than the process temperature. The bandgap value of the sample before annealing is 2.95 eV, while the bandgap value after annealing is 2.5 eV. The sensor response graph of SnO2 was obtained for 300°C and 10,000 ppm values. When samples produced at 350 °C were annealed to 450°C, improvement in morphological structure is detected, so the film quality and properties are highly dependent on temperature. The obtained XRD results support that the factor that homogenizes the crystallinity of the films is the increasing annealing temperature. It was observed that the sensor response increased after annealing. The increase in sensor response is due to the effect of additional heat treatment.

PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The authors keep the copyrights of the published materials with them, but the authors are aggee to give an exclusive license to the publisher that transfers all publishing and commercial exploitation rights to the publisher. The puslisher then shares the content published in this journal under CC BY-NC-ND license.